
Decentralized Algorithms for Efficient Energy
Management over Cloud-Edge Infrastructures

Aristeidis Karras1(B) , Christos Karras1 , Ioanna Giannoukou2 ,
Konstantinos C. Giotopoulos2 , Dimitrios Tsolis3 , Ioannis Karydis4 , and

Spyros Sioutas1

1 Computer Engineering and Informatics Department, University of Patras, 26504
Patras, Greece

{akarras,c.karras,sioutas}@ceid.upatras.gr
2 Department of Management Science and Technology, University of Patras, 26334

Patras, Greece
{igian,kgiotop}@upatras.gr

3 Department of History and Archaeology, University of Patras, 26504 Patras, Greece
dtsolis@upatras.gr

4 Department of Informatics, Ionian University, 49100 Corfu, Greece
karydis@ionio.gr

Abstract. This paper presents an innovative approach to overcoming
the limitations of traditional cloud-centric architectures in the evolving
Internet of Things (IoT) landscape. We introduce a set of novel decentral-
ized algorithms boosting Mobile Edge Computing (MEC), a paradigm
shift towards placing computational resources near data sources, thus
boosting real-time processing and energy efficiency. Our approach ad-
dresses the challenges of managing distributed Cloud-edge infrastruc-
tures in high-mobility environments, such as drone networks. Utilizing
the Random Waypoint Model to anticipate device trajectories, our al-
gorithms ensure effective resource allocation, enhanced load balancing,
and improved Quality of Service (QoS). An in-depth complexity analysis
further improves the scalability and performance of our method, demon-
strating their ability to optimize energy efficiency and minimize latency,
offering optimized offloading strategies in dynamic IoT environments.

Keywords: Decentralized Computing · Cloud Computing · Edge Com-
puting · IoT Systems · Energy Management · High-mobility Environ-
ments.

1 Introduction

The rapid proliferation of Internet of Things (IoT) technology in recent years,
alongside the increasing demand for high-performance, low-latency applications,
has placed a significant role on existing cloud-centric infrastructures. IoT devices,
commonly referred to as edge devices due to their proximity to data sources, fre-
quently generate massive volumes of data that need to be processed in real-time.

https://orcid.org/0000-0002-4632-6511
https://orcid.org/0000-0002-4253-7661
https://orcid.org/0000-0003-2112-6430
https://orcid.org/0000-0001-5989-6313
https://orcid.org/0000-0003-0760-4942
https://orcid.org/0000-0002-9470-2729
https://orcid.org/0000-0003-1825-5565


2 A. Karras et al.

However, the limitive nature of centralized cloud architectures can introduce la-
tency that undermines the real-time processing capabilities and energy efficiency
of such systems. Some emerging paradigms, such as the Mobile Edge Computing
(MEC), are designed to overcome these constraints by placing computation and
storage resources closer to data sources, thereby enabling prompt data processing
while conserving energy sources.

This progression towards the network edge indicates a transformative change
in infrastructure management, where tasks are no longer exclusively offloaded
to a central Cloud. Instead, computational workloads can be distributed across
the edge of a network, ensuring the proximity of MEC servers to data sources
for swift, efficient computation. By bringing computation closer to end-devices,
MEC minimizes transmission delays and reduces the volume of data that must
traverse the network, leading to enhanced quality of service (QoS) and improved
energy efficiency.

Apart from the potential benefits, the effective management of these dis-
tributed, Cloud-edge infrastructures presents a complex set of challenges. In
a dynamic environment characterized by high device mobility, such as drones,
finding the optimal offloading strategy becomes a challenging problem. Existing
offloading methods that assume static device positions may prove inadequate
in this new context. The added complexity of drone mobility necessitates al-
gorithms that can efficiently determine the most suitable MEC server for task
execution. The challenges are further compounded by the multitude of available
MEC servers, which could lead to suboptimal offloading decisions if tasks are
blindly assigned to directly linked servers.

The objective of this paper is to delve into these complexities and propose
a novel set of decentralized algorithms that optimize energy management across
cloud-edge infrastructures with mobile edge devices, like drones and also to as-
sess mobility and task allocation. Our proposed algorithms anticipate device
mobility, utilizing the Random Waypoint Model to predict device trajectories
and appropriately allocate resources. With the consideration of unique delay re-
strictions for each task, our approach aims to strike a balance between efficient
energy use and minimal latency, thereby improving QoS.

This paper is organized as follows: Section 2 discusses the relevant literature.
Section 3.2 presents the architecture of our model and formulates the problem.
The proposed algorithms are elaborated in Section 3.3. Section 4 assesses the
performance of these algorithms and discusses the results. Finally, Section 5
concludes the paper and explores potential future research directions.

2 Background and Related Work

In the dynamic and swiftly-evolving field of cloud computing, and its increas-
ingly significant extensions—edge, fog, and decentralized architectures—several
innovative improvements are changing the topic of resource management and
performance optimization across a combination of applications. Essential to this
transformation, tools, and algorithms such as CloudSim, a toolkit developed



Decentralized Algorithms for Efficient Energy Management 3

by Calheiros et al. [2], and the novel bio-inspired hybrid algorithm (NBIHA)
proposed by Rafique et al [17]. These novel ideas aim to increase resource provi-
sioning and improve energy efficiency and execution times within these different
computing environments, thereby establishing new benchmarks for enhancing
operational efficiency and performance.

Smart grid systems are also significantly affected by the ground-breaking im-
pact of these cutting-edge developments. Chekired et al.’s decentralized Cloud-
SDN architecture, which employs a dynamic pricing model [4], and Zahoor et
al.’s cloud-fog-based smart grid model are establishing the way for this tech-
nological breakthrough [23,24]. The model proposed by Zahoor effectively com-
bines the ideas of ant colony optimization and artificial bee colony optimization.
These revolutionary improvements not only enhance efficient energy manage-
ment and utilization but additionally optimize resource utilization, even in the
most high-demanding cases, demonstrating effectiveness and flexibility in the
current energy environment.

Alongside the recent advances in smart grid systems, there is a simultane-
ous growth of innovation that incorporates the power of cloud computing with
the broad Internet of Things (IoT) network. Han et al.’s efficient deep learn-
ing framework for intelligent energy management effectively incorporates this
synergy [8]. This framework improves smart grid models, such as those pre-
sented by [4] and [23,24], by facilitating the demand for energy and response
processes efficiently. Pantazoglou et al. have proposed a decentralized, energy-
efficient workload management system for enterprise clouds to complement this
technological integration [16]. Each node operates independently, simulating the
autonomous behavior of ant and bee colonies in Zahoor’s model, consequently
enhancing the autonomy and efficiency of the system as an entire unit.

Regarding the progress made in combining cloud computing and IoT net-
works, major improvements are also being made in the fields of edge networks
and vehicular edge computing. Liu et al. are on the leading edge with their multi-
factor energy-aware resource management system [14], while Wang et al. have
developed a cloud-edge collaborative strategy for computation offloading [21].
Alongside addressing increased traffic flow demands and expansive distribution
distances, these cutting-edge methodologies enhance vehicular edge computing
performance to levels never before achieved.

Machine learning and deep reinforcement learning approaches have become
powerful factors in the direction of enhanced energy efficiency and optimized
resource utilization. This is demonstrated by Tian et al.’s decentralized collab-
orative power management system [20]. By applying the power of multi-device
knowledge sharing, their system leads to significant energy savings. Alongside
this, Jayanetti et al. have utilized deep reinforcement learning to create an in-
novative scheduling framework, deftly managing complex workflow scheduling
problems in edge-cloud environments [9].

As a result of the progress made essential through machine learning and deep
reinforcement learning, Rey-Jouanchicot et al. [18] and Blanco et al. [6] empha-
size on the essential role that IoT device availability and robust consensus models



4 A. Karras et al.

have. These components prove to be critical in determining computational ca-
pacity and managing resources in applications such as smart buildings or cities.
Xiong et al.’s study on blockchain network management provides a major new di-
mension to the optimization of system performance by delving into this complex
and data-rich environment [22]. Ultimately, these innovations represent the rapid
development and great possibilities offered by cloud, edge, and fog computing,
significantly enhancing the performance of a wide spectrum of applications.

2.1 Decentralized Energy Management

The complexities of energy management in cloud-edge infrastructures arise due
to the dynamic nature of resources, especially when compared to traditional
cloud settings [13]. Edge computing, a decentralized paradigm, capitalizes on re-
sources at the network’s edge to facilitate local data processing, making it closer
to user-end devices such as smartphones or wearables. Recently, edge, there has
been a marked increase in the application of machine learning (ML) at this net-
work edge. This trend mainly seeks to enhance computational services, especially
focusing on reduced latency, energy conservation, and resource optimization [1].

In the exploration of energy-efficient resource allocation, adapting distributed
machine learning (ML) algorithms for execution at the edge is crucial. This
strategic adaptation promotes synergy with cloud systems, aiming to achieve
reduced latency, enhanced energy efficiency, safeguarded user privacy, and im-
proved system scalability [15]. Recent technological advancements encompass a
deep reinforcement learning-based mechanism, specifically designed for cloud-
edge collaborative offloading, addressing the dynamic requirements of industrial
networks [5]. Additionally, for advanced energy management in smart grids, a
privacy-focused average consensus algorithm has been introduced, seamlessly
integrating the benefits of both cloud and edge computing [7].

In summary, achieving energy efficiency in cloud-edge infrastructures primar-
ily requires adapting machine learning algorithms for edge environments, utiliz-
ing distributed learning techniques, and designing privacy-centric methodologies
to ensure secure and effective resource allocation.

2.2 Mobile Edge Computing vs Traditional Cloud-Centric
Architectures

Mobile Edge Computing (MEC) is a paradigm shift towards placing computa-
tional resources near data sources, thus boosting real-time processing and energy
efficiency. MEC is a distributed computing architecture that extends cloud com-
puting capabilities to the edge of the network, closer to the end-users and data
sources. This tension towards the network edge indicates a transformative change
in infrastructure management, where tasks are no longer exclusively offloaded to
a central Cloud. Instead, computational workloads can be distributed across the
edge of a network, ensuring the proximity of MEC servers to data sources for
swift, efficient computation. By making the computation closer to end devices,
MEC minimizes transmission delays and reduces the volume of data that must



Decentralized Algorithms for Efficient Energy Management 5

traverse the network, leading to enhanced quality of service (QoS) and improved
energy efficiency. In contrast, traditional cloud-centric architectures rely on cen-
tralized data centers to process and store data, which can result in higher latency
and increased network traffic.

2.3 Energy-efficient resource allocation in Cloud-Edge
Infrastructures.

The escalating demand for computing capabilities coupled with increasing energy
consumption of data centers has emphasized the significance of energy-efficient
resource allocation in cloud-edge infrastructures [19,3]. Integrating renewable
energy into data centers offers the potential to reduce their energy use and
carbon footprints [12]. However, the natural variability of renewable sources
often results in under-utilization. To counter this, research has focused on two
primary strategies: energy storage and opportunistic scheduling [12].

In the context of mini data centers, combined optimization of virtual ma-
chines (VMs) and energy resources has shown to reduce grid electricity usage
by 22%, as compared to solely focusing on VM allocation [19]. This reduction
further extends to 28.5% when considering less energy-efficient servers [19]. In
distributed cloud-edge systems, the challenge of joint workload distribution and
computational resource adjustment has been approached using the Dynamic
Voltage and Frequency Scaling (DVFS) method. By dynamically adjusting VM
computation frequencies based on demand, this method offers energy conserva-
tion benefits [25].

Regarding UAV-enabled secure edge-cloud computing systems, strategies for
efficient resource allocation and computation offloading have been identified as
key to reducing energy consumption [11]. This problem is approached by seg-
menting it into resource allocation, task distribution, and computation offload-
ing. Systematic solutions for each segment have been proposed to ensure energy-
efficient resource allocation and offloading [11].

In conclusion, achieving energy efficiency in cloud-edge infrastructures de-
mands a comprehensive approach. This includes the integration of renewable
energy, strategic scheduling, optimized VM and energy allocation, and advanced
computation offloading methods. These collective efforts can lead to considerable
reductions in energy consumption and carbon output, addressing the growing
need for computational resources.

2.4 Comparison Analysis of Algorithms

In recent years, the necessity for optimized resource allocation in computing
systems has yielded several algorithms, with OptiMEC leading the initial charge.
Introduced in our foundational work [10], OptiMEC sought to efficiently allocate
resources by minimizing energy consumption. Building upon the groundwork
laid by OptiMEC, this paper presents advancements in the form of three novel
methods: EffiMEC, E-OptiMEC, and a dedicated Load-Balancing approach.



6 A. Karras et al.

EffiMEC shifts its primary focus to maximizing efficiency, while E-OptiMEC
combines elements from both OptiMEC and EffiMEC, targeting energy-efficient
solutions with an emphasis on drones. Lastly, our Load-Balancing method in-
troduces a dynamic way of distributing workloads, thereby reducing latency and
further promoting energy efficiency.

Table 1 below provides a comparative analysis of these methods, shedding
light on their objectives, focal points, and underlying mechanisms.

Table 1. Comparative Analysis of Algorithms

Feature Aspect Algorithm

OptiMEC EffiMEC E-
OptiMEC

Load-
Balancing

Objective Minimize Energy ✓ - ✓ -
Maximize Efficiency - ✓ - -

Focus Mobility User Drone Drone UAV
Load Distribution - - - ✓

Input Task Task, User
Mob., Deadl.

Task, Server
Effic.

Task, Drone
Mob., Deadl.

Task, UAV
Mob., Deadl.

Output Type Workload
Distrib.

Server
Selection

Drone-based
Distrib.

Balancing
Plan

Mechanism Action Min. Energy
for Tasks

Max.
Efficiency

Identify Low
Energy
Servers

Balance
Workload
and Latency

Comparative Overview

– OptiMEC [10]: Focused on scenarios involving mobile users, OptiMEC dili-
gently minimizes energy use, accounting for user mobility and task deadlines
through its predictive architecture.

– EffiMEC: Developed as an alternative for UAVs, EffiMEC transitions from
a sole focus on energy to prioritize computational efficiency, adjusting struc-
tural considerations to suit drone operations.

– E-OptiMEC: A drone-adapted variant, E-OptiMEC, maintains an energy
optimization focus, adjusted for drone-specific contexts.

– Load-Balancing: The Load-Balancing method is a comprehensive strategy
accentuating real-time task distribution while ensuring adherence to energy
constraints and task deadlines.

Structural and Architectural Variances with OptiMEC

– Energy versus Efficiency: While OptiMEC seeks to optimize energy con-
sumption, EffiMEC targets optimal computational efficiency.

– Mobility Consideration: OptiMEC’s architecture is devised for mobile user
scenarios, a stark contrast to E-OptiMEC and Load-Balancing, both of which
cater to UAV operations.



Decentralized Algorithms for Efficient Energy Management 7

– Task Management Mechanisms: Load-Balancing introduces a more refined
task management framework, contrasting with the more general approach in
OptiMEC.

Design Distinctions The choice between EffiMEC, E-OptiMEC, or the Load-
Balancing algorithm should align with specific operational priorities and con-
texts:

– EffiMEC is optimal in environments where computational efficiency takes
precedence over energy conservation.

– E-OptiMEC and Load-Balancing are best suited for scenarios that demand
a comprehensive strategy, especially when contending with dynamic task
necessities and constrained energy supplies.

– OptiMEC remains the preferred choice for environments primarily driven by
the objective of energy conservation, particularly in mobile user scenarios.

Final Analysis of Proposed Algorithms: EffiMEC and E-OptiMEC The
algorithms introduced in this paper, EffiMEC and E-OptiMEC, have been com-
pared with two alternative methods: Random Allocation and Load-Balancing.
Both method are explained in depth in our previous work [10]. Analytical re-
sults demonstrate that EffiMEC emerges as the most efficient, registering the
least average energy consumption, with E-OptiMEC showcasing a comparable
performance.

In its operational mechanics, the E-OptiMEC heuristic assigns each task to
a MEC server, ensuring the task deadline is achieved while optimizing energy
consumption. At every time interval, for each drone, the heuristic evaluates ac-
cessible MEC servers, gravitating towards the one that minimizes total energy
expended during task execution. The end product of this algorithm is a server
assignment aimed at attenuating the transmission energy indispensable for task
distribution. When contrasted with the Random-Allocation method, OptiMEC’s
energy efficiency surpasses it by 10.42%.

Load-Balancing serves as a standard reference for this analysis. The data
affirms that both EffiMEC and E-OptiMEC display superior performance over
Load-Balancing.

3 Methodology

3.1 Problem Formulation

A Mobile Edge Network (MEN) is structured with multiple Base Stations (BS).
Each BS is fortified with a MEC server, tailored for energy-efficient operations
as per algorithms like OptiMEC and EffiMEC which are further analysed below.
These servers are adept at receiving, processing, and relaying computational
tasks offloaded by users within their signal domains. Notably, BSs are interlinked



8 A. Karras et al.

via a Central Base Station (CBS), ensuring efficient load-balancing and task
distribution.

Mobile users (MUs) or Mobile Devices (MDs), in their quest for reduced
latency and energy conservation, as emphasized by the E-OptiMEC framework,
can offload tasks to MEC servers. Given the inherent mobility, users and devices
might transition beyond the range of an initial BS. As illustrated in Fig. 1,
after MU1 offloads task T1 to BS1, it moves out of its range. Here, leveraging
the adaptive strategies of algorithms, the MEC at BS1 can forward the task to
the MEC at BS2, aligning with the user’s current location. This ensures any
MEC within the user’s trajectory remains poised to execute the offloaded task,
optimizing both energy consumption and computational efficiency.

Central Base Station

Base Station 1
Base Station 2

Base Station 3

MEC
Server 1

MEC
Server 3

MEC
Server 2

MU1

MU2

MU1

MU1 Trajectory

Fig. 1. Mobile Edge Computing Network.

The problem can be articulated as a mathematical optimization challenge
with the objective of minimizing the total energy consumption for all mobile de-
vices represented by the set N . The aim is to determine the optimal MEC server
from a set of accessible servers, denoted for each trajectory of a device as Si, that
meets each stipulated task deadline. A pivotal hurdle lies in detecting available
MEC servers when a user relocates and in orchestrating task computation at a
designated server.

Let us denote N = {1, 2, . . . , i, . . . , N} as the mobile devices traversing the
area overseen by MEN. Every user possesses a task Ti, characterized as a triplet
(si, ci, tmax), where si represents the size of the computational task, ci is the
essential computation resource measured in cycles, and tmax denotes the task’s
deadline. Furthermore, there are M base stations in total, with each having a
signal range rj and the corresponding MEC boasting a computation capacity of
aj .



Decentralized Algorithms for Efficient Energy Management 9

3.2 Proposed Decentralized Energy-Efficient Algorithm

Given the complexity of the problem formulated in the previous sections, a novel
decentralized algorithm is proposed to solve the problem in a scalable manner
while preserving energy efficiency. This algorithm, referred to as the Decentral-
ized Energy-efficient Offloading and Resource Allocation (EffiMEC), is designed
to handle drone mobility and dynamically offload tasks to different edge servers
following the trajectory of mobile drones. The EffiMEC approach is inspired
by swarm intelligence, particularly ant colony optimization, with adaptations to
suit the MEC context.

3.3 Algorithm Description

Each Mobile Device (MD) in the network runs an instance of the EffiMEC
algorithm, enabling a fully decentralized system. The algorithm works as follows:

1. Each MD i initiates the algorithm by considering its current location and
available MEC servers within its range. This set of servers is denoted by S0

i .
2. The MD calculates the energy cost Ei,j and execution time ti,j for each

available MEC server j in S0
i . These values are used to evaluate the suitability

of each server.
3. For each server j in S0

i , MD calculates the quality of the server, Qi,j , as
follows:

Qi,j =
1

Ei,j
− λ · ti,j (1)

where λ is a tunable parameter representing the trade-off between energy
conservation and time efficiency. A higher λ gives more importance to time
efficiency, while a lower λ gives more importance to energy conservation.

4. The MD then probabilistically selects the next MEC server to offload the
task based on the quality of the servers. The probability Pi,j of selecting
server j is calculated as follows:

Pi,j =
Qi,j∑

k∈S0
i
Qi,k

(2)

5. After offloading the task to the selected MEC server, the MD moves to the
next location, and the set of available MEC servers St

i gets updated. The
above steps are repeated until the task is fully executed or the task deadline
is reached.

3.4 Proposed Heuristic: Efficiency Maximizing Algorithm

In Algorithm 1, a series of symbols are utilized to define, calculate, and manip-
ulate various parameters related to the task allocation problem, drones, servers,
and other computational elements. A comprehensive list of these symbols and
their corresponding definitions is presented in Table 2. These symbols represent



10 A. Karras et al.

various entities and metrics such as the drones, servers, task-related parameters,
time intervals, and efficiencies, which are critical for the functioning and expla-
nation of the EffiMEC algorithm. The specific use and context of each symbol
are based upon the operations and calculations performed within the algorithm,
and they collectively serve to establish a mathematical and logical framework to
elucidate the heuristic’s inner workings and methodologies. Understanding these
symbols and their respective roles within the algorithm is vital for comprehend-
ing the mechanics, analyses, and results of the proposed heuristic approach.

Table 2. Symbol Definitions for EffiMEC Algorithm

Symbol Definition
P1 The task allocation problem
i Drone identifier
t Time step or interval

mti Final time step for drone i
N Set of mobile drones
M Set of base stations
St
i Available MEC servers for drone i at time t

Ti Task assigned to drone i
tdi Deadline for task Ti

tej Time required for task execution on server j

tui,j Time to upload task from drone i to server j

tei,j Execution time of task on server j from drone i

effj Efficiency of server j
ci,j Computational capacity of server j for drone i
ei,j Energy consumed for task execution on server j from drone i

ttrj0...t−1 Transmission time from server j at previous time steps
ttrjt−1,j Transmission time from server j at time t− 1 to j at time t

etrj0...t−1 Transmission energy from server j at previous time steps
etrjt−1,j Transmission energy from server j at time t− 1 to j at time t

yi Assigned server for drone i

The task allocation problem P1 is a combinatorial optimization problem,
classified as NP-hard. To address this issue, we propose an efficiency-maximizing
heuristic called "EffiMEC". Similar to the OptiMEC algorithm, each drone i
offloads a task Ti with details about the task size, required computational re-
sources, and deadline.

For each drone i ∈ N and at each time interval t ∈ [0,mti], the CBS iden-
tifies available MEC servers, denoted as St

i . The objective is to find an optimal
server from St

i for computation and a suitable server for transmission of the
task to another server in the next time step region. The time required for up-
loading, transmission and computation is calculated and compared against the



Decentralized Algorithms for Efficient Energy Management 11

task deadline at each time step. The efficiency of each available server in St
i is

computed by considering the computational capacity and the energy consumed
during transmission and execution up to time step t− 1.

Algorithm 1 EffiMEC Algorithm
Input: mobile drones N , base stations M
Output: yi,∀i ∈M
1: for each drone i ∈ N do
2: St

i← get available MEC servers at final time step (mti)
3: for each server j ∈ St

i do
4: if t == 0 then
5: tej = tui,j + tei,j
6: if tej ≤ tdi then
7: effj = (ci,j − ei,j)/ci,j
8: else
9: effj←0

10: end if
11: else
12: tej = ttrj0 . . . t− 1 + ttrjt− 1, j + tei,j
13: if tej ≤ tdi then
14: effj = (ci,j − etrj0 . . . t− 1− etrjt− 1, j − ei,j)/ci,j
15: else
16: effj←0
17: end if
18: end if
19: end for
20: jt∗ = argmaxj(effj)
21: end for
22: return yi,∀i ∈M

This procedure is reiterated for all time intervals. The server with the highest
efficiency is assigned to the task Ti for execution. The efficiency of a server at time
step t can be calculated by subtracting the energy consumed for transmission up
to time step t − 1 and the energy required to offload the task from the server’s
location to the next time step’s locality from the server’s computational capacity.
The algorithm finally outputs yi ∀i ∈ N , the server assignment that maximizes
efficiency while satisfying the delay constraints.

In addition, we propose a resource-allocation algorithm. This heuristic en-
sures the efficient use of available resources by balancing the computation load
among servers. This algorithm is provided in Algorithm 3.



12 A. Karras et al.

3.5 Complexity Analysis of the EffiMEC Algorithm

The time complexity of the EffiMEC algorithm arises from its nested loop struc-
ture. The outer loop traverses all N mobile drones, while the inner loop iterates
over M MEC servers available to each drone. As such, the worst-case scenario
presents a time complexity of O(NM). The operations within these loops, includ-
ing computations, condition checking, and assignments, possess a constant time
complexity of O(1). Therefore, it does not affect the overall time complexity.
It is important to note, the complexity could increase if the invoked functions,
such as getting available MEC servers at the final time step have higher time
complexities. Regarding space complexity, the EffiMEC algorithm appears to
use a constant amount of space (O(1)), not necessitating data structures that
scale with the size of the input. This analysis considers the worst-case scenario.
Depending on server distribution and specific implementation, the actual per-
formance may vary.

3.6 Proposed Scheduling Framework

Our problem P1 has been identified as a constraint satisfaction problem and is
of NP-complete nature. To solve it, we put forward a scheduling heuristic. The
heuristic works as follows: Every drone i offloads the task Ti along with necessary
information such as the size of the computational task, required computation
resources (expressed in cycles), and task deadline. The Central Base Station
(CBS) allocates each task to a Multi-access Edge Computing (MEC) server
that fulfils the task deadline and ensures minimum energy consumption. We
call this mechanism the Energy-efficient Optimal Multi-Access Edge Computing
(E-OptiMEC) algorithm, and its procedure is detailed in Algorithm 2.

At each time step t ∈ [0,mti] for every drone i ∈ N , the heuristic identifies
the available MEC servers, denoted as St

i . Among the available servers, the goal
is to identify two servers - one for task execution, and one for task transmission,
to offload the task to a server in the subsequent time step’s location. Given that
the task assignment must adhere to the delay constraint, the time required for
uploading, transmission, and execution is calculated and checked against the
delay constraint at each time step. The algorithm also computes the energy
consumed due to transmission and execution for each available server.

This process is replicated across all temporal instances, whereby the server
demonstrating the lowest energy expenditure is elected for executing task Ti.
The transmission energy at a given timestamp t can be derived by combining the
cumulative transmission energy until timestamp t−1 and the energy mandated to
transfer the task from the incumbent server’s location to the drone’s position at
the ensuing timestamp t+1. In the final analysis, the algorithm yields xi ∀i ∈ N ,
specifying the server that optimizes energy utilization while adhering to the
latency stipulations of task Ti.



Decentralized Algorithms for Efficient Energy Management 13

Algorithm 2 E-OptiMEC Algorithm
Input: mobile drones N , base stations M
Output: xi,∀i ∈M
1: for each drone i ∈ N do
2: St

i← identify available MEC servers at the final time step (mti)
3: for each server j ∈ St

i do
4: Calculate time and energy for task execution and transmission
5: Identify suitable servers for task execution and transmission based on

least energy consumption and deadline satisfaction
6: end for
7: Select the server with the minimum total energy consumption
8: end for
9: return xi,∀i ∈M

3.7 Complexity Analysis of the E-OptiMEC Algorithm

The time complexity of the E-OptiMEC algorithm derives primarily from its
nested loop construction. The outer loop iterates over each of the N mobile
drones, while the inner loop traverses M MEC servers accessible to a given
drone. Consequently, the worst-case time complexity is O(NM). Within these
loops, operations such as calculations, server identification based on energy con-
sumption and deadline satisfaction, and server selection all carry a constant time
complexity, O(1). Thus, they do not impact the overall time complexity.

However, the total time complexity could be greater if the internal functions,
like identifying available MEC servers at the final time step, have higher time
complexities. As for the space complexity, the E-OptiMEC algorithm uses a
constant amount of space, O(1), since it does not require data structures scaling
with the size of the input. This analysis represents a worst-case scenario. The
actual performance may be more efficient, contingent upon the specific server
distribution and implementation details.

Moreover, we offer an example of a load-balancing heuristic algorithm de-
signed to balance each mobile drone’s energy consumption across available servers.
This algorithm is depicted in Algorithm 3.

Algorithm 3 makes use of the energy consumption information of each mobile
drone among the available servers. It selects the server with the lowest energy
consumption for task assignment. If the energy balance for mobile drones falls
below the threshold et, the algorithm includes a step to postpone tasks or reduce
task complexity. Moreover, the algorithm updates each drone’s energy balance
after each workload distribution, facilitating more precise load-balancing deci-
sions.



14 A. Karras et al.

Algorithm 3 Power-Efficient Workload Distribution Using E-OptiMEC
Input: UAVs N , base stations M , energy cap et
Output: xi,∀i ∈ N
1: for each UAV i ∈ N do
2: for each timestep t ∈ [0,mti] do
3: St

i locates reachable MEC servers at timestep t
4: Evaluate energy usage for each UAV i
5: Pinpoint server with smallest energy drain (jt)
6: Amend energy balance record for UAV i
7: if UAV i energy balance < et then
8: defer task or diminish task sophistication
9: else

10: consign the task to server jt
11: end if
12: Renew the transmission energy (etr) and transmission interval (ttr)
13: end for
14: end for
15: return xi,∀i ∈ N

3.8 Complexity Analysis of the Energy-Efficient Load Balancing
Based on E-OptiMEC Algorithm

The Energy-Efficient Load Balancing Based on E-OptiMEC algorithm intro-
duces an additional layer of complexity through its use of two nested loops. The
outer loop iterates over the N mobile drones, while the inner loop goes through
each timestep t within the range [0, mti] for each drone i.

Without specific knowledge of the variable mti, the worst-case scenario would
suggest it’s a value of T where T is the maximum number of timesteps. Therefore,
in the worst case, the inner loop would run T times for each drone. This results in
a worst-case time complexity of O(NT) for each drone, and with M base stations,
it becomes O(NMT), given that M base stations are checked in each timestep for
each drone. The operations within these loops have a constant time complexity
of O(1). However, as before, the overall time complexity may be higher if the
internal functions like determine available MEC servers at timestep t have time
complexities exceeding O(1).

As for the space complexity, the algorithm appears to use a constant amount
of space (O(1)), as it doesn’t employ data structures that grow with the in-
put size. Note that this analysis is for the worst-case scenario. The actual per-
formance may be more efficient depending on specific server distribution, the
distribution of timesteps per drone, and implementation details.

The prior discourse outlined a load-balancing mechanism among mobile drones
in a network, the advantages of which can be enumerated as follows:

1. Energy efficiency: The proposed method significantly enhances energy ef-
ficiency within a mobile edge computing network. This is achieved by of-



Decentralized Algorithms for Efficient Energy Management 15

floading computational tasks to proximate servers, which reduces the energy
consumption of mobile devices. Therefore, by regulating the energy expendi-
ture among mobile drones, the cumulative energy consumption of the system
can be reduced, fostering a more energy-efficient network.

2. Equitable workload distribution: The suggested algorithm ensures a
fair distribution of workload among the available servers. This equitable
distribution forestalls the overloading of certain servers while others remain
underutilized, leading to enhanced resource utilization and improved energy
efficiency.

To elucidate the proposed load-balancing algorithm, let’s contemplate a hy-
pothetical scenario. Drone 1 offloads tasks to MEC servers BS1 and BS2 at
timestep 0, as displayed in Table 3. Here, BS2 is selected for task execution due
to its lesser energy consumption post uploading and execution. Concurrently,
BS1 is employed to offload the task to MEC servers in the subsequent timestep
due to its lower energy consumption for transmission (refer to Table 4).

Table 3. E-OptiMEC at timestep 1

Execution Transmission
drone1→ BS1 BS1 → drone1

tu1 + tex1 = 0.6 (< 1) tu1 + ttr1 = 0.3
eu1 + eex1 = 0.9 eu1 + etr1 = 0.6
drone1→ BS2 BS2 → drone1

tu1 + tex1 = 0.7 (< 1) tu1 + ttr1 = 0.4
eu1 + eex1 = 0.8 eu1 + etr1 = 0.7

Table 4. E-OptiMEC at timestep 2

Execution Transmission
drone1→ BS1 → BS3 BS3 → drone1
tu1 + ttr1 + t

ex
1 = 0.9 (< 1) tu1 + ttr1 + ttr1 = 0.5

eu1 + etr1 + eex1 = 0.7 eu1 + etr1 + etr1 = 0.9
drone1→ BS1 → BS4 BS4 → drone1
tu1 + ttr1 + t

ex
1 = 0.7 (< 1) tu1 + ttr1 + ttr1 = 0.6

eu1 + etr1 + eex1 = 0.8 eu1 + etr1 + etr1 = 0.8

In the subsequent timestep, the MEC servers at disposal are BS3 and BS4.
BS3 is elected for execution as it consumes lesser energy post uploading and
execution. On the other hand, BS4 is chosen to offload the task to the accessible
MEC servers owing to its lower transmission energy requirement. At the final
timestep, the available MEC servers are BS5 and BS6. BS5 is ultimately selected
for execution due to its lower energy consumption post uploading and execution.

Table 5. E-OptiMEC Execution Phase

Execution Phase
drone1→ BS1 → BS4 → BS5

tu1 + ttr1 + ttr1 + t
ex
1 = 0.7 (< 1)

eu1 + etr1 + etr1 + eex1 = 1.2
drone1→ BS1 → BS4 → BS6

tu1 + ttr1 + ttr1 + t
ex
1 = 0.6 (< 1)

eu1 + etr1 + etr1 + e
ex
1 = 1.3



16 A. Karras et al.

Subsequently, as this is the final timestep, there are no further transmissions
from BS5 or BS6. The CBS will then delegate the task to either BS2, BS3, or
BS5, contingent on the server that consumes the least execution energy.

The simulation parameters are as follows: the coverage radius of the base
station ranges from 70 to 100 meters; the CPU capacity of the MEC is within
the range of 7 to 20 GHz; the computation power varies between 3 to 5 watts;
the transmission power lies within 0.1 to 1 watt; the channel bandwidth is set
at 1 MHz; the mobility speed of the drone is between 1 to 3 Km/h; the task
requirement as per CPU capacity ranges from 1 to 10 GHz; the input data size
is between 1 to 3 MB; and the task deadline constraint is within 0.1 to 1 second.

For empirical analysis, the proposed algorithm is evaluated in comparison
to the random waypoint model and mobile execution (which refers to executing
a task on a mobile device instead of a remote server). This comparative anal-
ysis provides a robust performance assessment, underscoring the merits of the
proposed algorithm.

4 Experimental Results

In this section, we evaluate the efficacy of our suggested algorithms in accom-
plishing minimal-energy task allocation, taking into account the mobility of de-
vices. Moreover, we carry out trials with diverse drone devices, spanning a range
of 1 to 10 units. In terms of mobility, we employ data sourced from 57 base
stations situated in the central region of London, UK. Moreover, we assess the
performance of our proposed algorithms through rigorous experimentation. The
primary objectives of these evaluations are twofold as shown in Table 6.

Table 6. Evaluation Metrics Description.

Metric Description

Task Completion Efficacy Evaluates task completion rates in relation to
task deadlines for different drone counts.

Energy Consumption Efficiency Assesses energy usage concerning drone count
and task input size. Lower values indicate ef-
ficient, sustainable operations.

As depicted in Figure 2, it is observed that the Task completion percentage
surpasses that of the other three methods when varying Task deadline con-
straints are applied. The load balancing technique consistently outperforms the
other three methods, with EffiMec following closely as the second most effec-
tive solution. OptiMEC displays a significant improvement, being 12.56% higher
than Random-Allocation and a substantial 29.10% higher than Local-Execution
on average. Additionally, a noteworthy observation is the proportional relation-
ship between the Deadline constraint and the Task completion percentage; as



Decentralized Algorithms for Efficient Energy Management 17

0 1 2 3 4 5
Task Deadline (minutes)

0

20

40

60

80

100

Ta
sk

 C
om

pl
et

io
n 

(%
)

OptiMEC
EffiMEC
E-OptiMEC
Load Balancing

0 1 2 3 4 5
Task Deadline (minutes)

0

20

40

60

80

100

Ta
sk

 C
om

pl
et

io
n 

(%
)

OptiMEC
EffiMEC
E-OptiMEC
Load Balancing

Fig. 2. Percentage of Task Completion in correlation to Task Deadline for (a) a single
drone and (b) ten drones.

the Deadline constraint is increased, the Task completion percentage likewise
sees an increase.

2 4 6 8 10
Number of Drones

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Av
er

ag
e 

En
er

gy
 C

on
su

m
pt

io
n

OptiMEC
EffiMEC
E-OptiMEC
Load Balancing

0 20 40 60 80 100
Task Input Size

0

10

20

30

40

50

60

70

En
er

gy
 C

on
su

m
pt

io
n

OptiMEC
EffiMEC
E-OptiMEC
Load Balancing

Fig. 3. (a) Average Energy Utilization in correlation with Drone Count and (b) Cor-
relation of Task Input Dimension with Energy Expenditure.

Fig. 3 illustrates the fluctuations in energy consumption with varying task
input sizes. It becomes abundantly clear that as the task input size escalates,
there is a commensurate increase in energy consumption, attributable to the
amplified transmission energy required for task distribution. OptiMEC’s energy
consumption is more efficient by 10.42% compared to the Random-Allocation
method. However, EffiMEC provides an even more efficient solution, boasting
the lowest average energy usage, while E-OptiMEC exhibits similar performance.
Lastly, within the dimension of Task input size, we notice some spikes coinciding
with task arrivals, but the E-OptiMEC technique exhibits superior resilience to
these energy fluctuations.



18 A. Karras et al.

5 Conclusions and Future Work

In this work, two novel heuristics are proposed to solve an NP-hard task al-
location problem in a Mobile Edge Computing (MEC) context. The first one,
EffiMEC, is an efficiency-maximizing algorithm designed to maximize the com-
putational efficiency of servers in the MEC network, while the second one, E-
OptiMEC, is an energy-optimizing heuristic aimed at minimizing energy con-
sumption during task execution and transmission. The proposed heuristics oper-
ate within a constraint satisfaction framework, wherein tasks from mobile drones
are allocated to suitable MEC servers based on energy consumption and com-
putational efficiency while satisfying task deadlines.

EffiMEC algorithm, whose worst-case time complexity is O(NM), operates
by selecting, for each drone at each time interval, the server with the highest
efficiency. Efficiency here is determined by computational capacity minus energy
consumed for transmission up to the previous time step and the energy required
for offloading the task to the next time step. The output of the algorithm is the
server that maximizes efficiency while satisfying the delay constraints.

On the other hand, the E-OptiMEC heuristic operates by allocating each
task to a MEC server that fulfils the task deadline and ensures minimum energy
consumption. At each time step, for each drone, the heuristic identifies available
MEC servers and chooses the one with minimum total energy consumption for
task execution. The output of this algorithm is the server assignment that mini-
mizes energy consumption while meeting delay constraints. These two heuristics,
based on their designs, could provide more efficient and energy-saving solutions
for task allocation problems in MEC networks. However, they are heuristic so-
lutions, and there’s no guarantee they’ll always achieve the optimal solution.
Further, the actual performance of these algorithms may vary depending on
server distribution and specific implementation.

As future work, it could be beneficial to conduct comprehensive performance
analysis and comparisons of these heuristics in different scenarios or under vary-
ing constraints. For instance, scenarios where energy availability or computa-
tional capacity is extremely limited, or where task deadlines are particularly
stringent. Moreover, while these heuristics are promising, it might be interesting
to explore potential enhancements to these algorithms, such as incorporating
machine learning techniques for dynamic adaptation, considering other perfor-
mance metrics like task failure rate, or addressing additional real-world consider-
ations like network congestion and server failure. Finally, the scalability of these
heuristics could be evaluated. Given that their complexity scales linearly with
the number of drones and servers, understanding how these heuristics perform
under heavy network loads could provide valuable insights into their practical
applicability in large-scale MEC deployments.

Acknowledgements

This research has been co-financed by the European Regional Development Fund
of the European Union and Greek national funds through the Operational Pro-



Decentralized Algorithms for Efficient Energy Management 19

gram Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH–CREATE–INNOVATE (project code: Τ2ΕΔΚ-00127).

References

1. Angel, N.A., Ravindran, D., Vincent, P.D.R., Srinivasan, K., Hu, Y.C.: Recent
advances in evolving computing paradigms: Cloud, edge, and fog technologies.
Sensors 22(1), 196 (2021)

2. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Software: Practice and experience 41(1),
23–50 (2011)

3. Chauhan, N., Kaur, N., Saini, K.S.: Energy efficient resource allocation in cloud
data center: A comparative analysis. In: 2022 International Conference on Compu-
tational Modelling, Simulation and Optimization (ICCMSO). pp. 201–206 (2022).
https://doi.org/10.1109/ICCMSO58359.2022.00049

4. Chekired, D.A., Khoukhi, L., Mouftah, H.T.: Decentralized cloud-sdn architecture
in smart grid: A dynamic pricing model. IEEE Transactions on Industrial Infor-
matics 14(3), 1220–1231 (2018). https://doi.org/10.1109/TII.2017.2742147

5. Chen, S., Chen, J., Miao, Y., Wang, Q., Zhao, C.: Deep reinforcement learning-
based cloud-edge collaborative mobile computation offloading in industrial net-
works. IEEE Transactions on Signal and Information Processing over Networks 8,
364–375 (2022). https://doi.org/10.1109/TSIPN.2022.3171336

6. Fernandez Blanco, D., Le Mouel, F., Lin, T., Ponge, J.: An energy-efficient faas edge
computing platform over iot nodes: Focus on consensus algorithm. In: Proceedings
of the 38th ACM/SIGAPP Symposium on Applied Computing. pp. 661–670 (2023)

7. Fu, W., Wan, Y., Qin, J., Kang, Y., Li, L.: Privacy-preserving optimal energy
management for smart grid with cloud-edge computing. IEEE Transactions on
Industrial Informatics 18(6), 4029–4038 (2022). https://doi.org/10.1109/TII.2021.
3114513

8. Han, T., Muhammad, K., Hussain, T., Lloret, J., Baik, S.W.: An efficient deep
learning framework for intelligent energy management in iot networks. IEEE In-
ternet of Things Journal 8(5), 3170–3179 (2020)

9. Jayanetti, A., Halgamuge, S., Buyya, R.: Deep reinforcement learning for energy
and time optimized scheduling of precedence-constrained tasks in edge–cloud com-
puting environments. Future Generation Computer Systems 137, 14–30 (2022)

10. Karras, A., Karras, C., Giannaros, A., Tsolis, D., Sioutas, S.: Mobility-aware work-
load distribution and task allocation for mobile edge computing networks. In: In-
ternational Conference on Advances in Computing Research. pp. 395–407. Springer
(2023)

11. Khan, U.A., Khalid, W., Saifullah, S.: Energy efficient resource allocation and com-
putation offloading strategy in a uav-enabled secure edge-cloud computing system.
In: 2020 IEEE International Conference on Smart Internet of Things (SmartIoT).
pp. 58–63 (2020). https://doi.org/10.1109/SmartIoT49966.2020.00018

12. Li, Y.: Resource allocation in a Cloud partially powered by renewable energy
sources. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom Atlantique (2017)

13. Lim, W.Y.B., Ng, J.S., Xiong, Z., Jin, J., Zhang, Y., Niyato, D., Leung, C., Miao,
C.: Decentralized edge intelligence: A dynamic resource allocation framework for
hierarchical federated learning. IEEE Transactions on Parallel and Distributed
Systems 33(3), 536–550 (2022). https://doi.org/10.1109/TPDS.2021.3096076

https://doi.org/10.1109/ICCMSO58359.2022.00049
https://doi.org/10.1109/ICCMSO58359.2022.00049
https://doi.org/10.1109/TII.2017.2742147
https://doi.org/10.1109/TII.2017.2742147
https://doi.org/10.1109/TSIPN.2022.3171336
https://doi.org/10.1109/TSIPN.2022.3171336
https://doi.org/10.1109/TII.2021.3114513
https://doi.org/10.1109/TII.2021.3114513
https://doi.org/10.1109/TII.2021.3114513
https://doi.org/10.1109/TII.2021.3114513
https://doi.org/10.1109/SmartIoT49966.2020.00018
https://doi.org/10.1109/SmartIoT49966.2020.00018
https://doi.org/10.1109/TPDS.2021.3096076
https://doi.org/10.1109/TPDS.2021.3096076


20 A. Karras et al.

14. Liu, P., Chaudhry, S.R., Huang, T., Wang, X., Collier, M.: Multi-factorial energy
aware resource management in edge networks. IEEE Transactions on Green Com-
munications and Networking 3(1), 45–56 (2019). https://doi.org/10.1109/TGCN.
2018.2874397

15. Marozzo, F., Orsino, A., Talia, D., Trunfio, P.: Edge computing solutions for dis-
tributed machine learning. In: 2022 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). pp. 1–8. IEEE (2022)

16. Pantazoglou, M., Tzortzakis, G., Delis, A.: Decentralized and energy-efficient work-
load management in enterprise clouds. IEEE Transactions on Cloud Computing
4(2), 196–209 (2016). https://doi.org/10.1109/TCC.2015.2464817

17. Rafique, H., Shah, M.A., Islam, S.U., Maqsood, T., Khan, S., Maple, C.: A novel
bio-inspired hybrid algorithm (nbiha) for efficient resource management in fog com-
puting. IEEE Access 7, 115760–115773 (2019). https://doi.org/10.1109/ACCESS.
2019.2924958

18. Rey-Jouanchicot, J., Del Castillo, J.Á.L., Zuckerman, S., Belmega, E.V.: Energy-
efficient online resource provisioning for cloud-edge platforms via multi-armed ban-
dits. In: 2022 International Symposium on Computer Architecture and High Per-
formance Computing Workshops (SBAC-PADW). pp. 45–50. IEEE (2022)

19. da Silva, M.D.M., Gamatié, A., Sassatelli, G., Poss, M., Robert, M.: Optimization
of data and energy migrations in mini data centers for carbon-neutral computing.
IEEE Transactions on Sustainable Computing 8(1), 68–81 (2023). https://doi.org/
10.1109/TSUSC.2022.3197090

20. Tian, Z., Li, H., Maeda, R.K.V., Feng, J., Xu, J.: Decentralized collaborative power
management through multi-device knowledge sharing. In: 2018 IEEE 36th Inter-
national Conference on Computer Design (ICCD). pp. 409–412. IEEE (2018)

21. Wang, S., Xin, N., Luo, Z., Lin, T.: An efficient computation offloading strategy
based on cloud-edge collaboration in vehicular edge computing. In: 2022 Interna-
tional Conference on Computing, Communication, Perception and Quantum Tech-
nology (CCPQT). pp. 193–197 (2022). https://doi.org/10.1109/CCPQT56151.
2022.00041

22. Xiong, Z., Kang, J., Niyato, D., Wang, P., Poor, H.V.: Cloud/edge computing
service management in blockchain networks: Multi-leader multi-follower game-
based admm for pricing. IEEE Transactions on Services Computing 13(2), 356–367
(2019)

23. Zahoor, S., Javaid, N., Khan, A., Ruqia, B., Muhammad, F.J., Zahid, M.: A cloud-
fog-based smart grid model for efficient resource utilization. In: 2018 14th Interna-
tional Wireless Communications & Mobile Computing Conference (IWCMC). pp.
1154–1160 (2018). https://doi.org/10.1109/IWCMC.2018.8450506

24. Zahoor, S., Javaid, S., Javaid, N., Ashraf, M., Ishmanov, F., Afzal, M.K.: Cloud-
fog-based smart grid model for efficient resource management. Sustainability 10(6),
2079 (2018)

25. Zhang, W., Zhang, Z., Zeadally, S., Chao, H.C., Leung, V.C.M.: Energy-
efficient workload allocation and computation resource configuration in distributed
cloud/edge computing systems with stochastic workloads. IEEE Journal on Se-
lected Areas in Communications 38(6), 1118–1132 (2020). https://doi.org/10.
1109/JSAC.2020.2986614

https://doi.org/10.1109/TGCN.2018.2874397
https://doi.org/10.1109/TGCN.2018.2874397
https://doi.org/10.1109/TGCN.2018.2874397
https://doi.org/10.1109/TGCN.2018.2874397
https://doi.org/10.1109/TCC.2015.2464817
https://doi.org/10.1109/TCC.2015.2464817
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/TSUSC.2022.3197090
https://doi.org/10.1109/TSUSC.2022.3197090
https://doi.org/10.1109/TSUSC.2022.3197090
https://doi.org/10.1109/TSUSC.2022.3197090
https://doi.org/10.1109/CCPQT56151.2022.00041
https://doi.org/10.1109/CCPQT56151.2022.00041
https://doi.org/10.1109/CCPQT56151.2022.00041
https://doi.org/10.1109/CCPQT56151.2022.00041
https://doi.org/10.1109/IWCMC.2018.8450506
https://doi.org/10.1109/IWCMC.2018.8450506
https://doi.org/10.1109/JSAC.2020.2986614
https://doi.org/10.1109/JSAC.2020.2986614
https://doi.org/10.1109/JSAC.2020.2986614
https://doi.org/10.1109/JSAC.2020.2986614

	Decentralized Algorithms for Efficient Energy Management over Cloud-Edge Infrastructures

